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The cause of seasonal hydrologic changes in tropical East Asia
during interstadial/stadial oscillations of the last glaciation remains
controversial. Here, we show seven seasonal drought events that
occurred during the relatively warm interstadials by phytolith and
pollen records. These events are significantly manifested as high
percentages of bilobate phytoliths and are consistent with the large
zonal sea-surface temperature (SST) gradient from the western to
eastern tropical Pacific, suggesting that the reduction in seasonal
precipitation could be interpreted by westward shifts of the west-
ern Pacific subtropical high triggered by changes of zonal SST gra-
dient over the tropical Pacific and Hadley circulation in the Northern
Hemisphere. Our findings highlight that both zonal and meridional
ocean–atmosphere circulations, rather than solely the Intertropical
Convergence Zone or El Niño-Southern Oscillation, controlled the
hydrologic changes in tropical East Asia during the last glaciation.

phytolith | pollen | interstadial/stadial | tropical SST gradient | Walker and
Hadley circulation

The tropics are home to regions of central importance to
global hydrologic cycles. As an important hydrological pa-

rameter, seasonal precipitation underwent profound changes in
the tropical oceans and their adjacent continents on different
timescales during the last glaciation (1). However, the features
and mechanisms that caused seasonal precipitation changes dur-
ing interstadial/stadial oscillations of the last glacial–interglacial
cycle in tropical regions remain controversial (2). Two contrasting
hypotheses were proposed to explain these changes. Both of these
hypotheses involve interactions between the meridional Hadley
and zonal Walker circulations as well as changes in sea-surface
temperature (SST) (3).
The first hypothesis invokes tropical SST changes in response

to a slowdown of the Atlantic Meridional Overturning Circula-
tion (AMOC) triggered by large iceberg discharges in the North
Atlantic during the stadials (4, 5) and the resulting shift of the
intertropical convergence zone (ITCZ). This AMOC-forced
southward movement of the ITCZ caused antiphase changes in
seasonal rainfall between north and south of the equator in the
tropical Pacific and its adjacent continents on the millennium
scale (6–9). The second hypothesis attributes the changes in the
tropical atmosphere–ocean dynamics stimulated by tropical SST
changes (e.g., El Niño-Southern Oscillation, ENSO) (10, 11) as
the cause of seasonal heavy/light rainfall in the eastern/western
tropical Pacific during the Heinrich stadials (12).
However, most of the evidence supporting these two hypoth-

eses comes from the Atlantic (13) and the tropical Pacific (1, 12,
14). Limited evidence is from tropical continents, and particularly
little evidence is available from terrestrial tropical East Asia,
where the mechanisms responsible for seasonal precipitation
changes are still under debate. Although the oxygen isotopes of
stalagmites on land have been viewed as one of the most robust
East Asian summer monsoon records, the interpretation of spe-
leothem δ18O in China remains controversial (15–17). Therefore,

to demonstrate these hypotheses, both unique research sites,
which could simultaneously receive continental and tropical ocean
signals, and unambiguous proxies, which could reflect annual and
seasonal precipitation, are urgently needed.
The core studied in this paper is located at Huguangyan Maar

Lake (HML) in Guangdong, southern coast of China (110°17′ E,
21°9′ N, 23 m above sea level) (Fig. 1). This region is closely
influenced by Hadley circulation (HC) over the continent and
Walker circulation (WC) over the tropical Pacific (18, 19), as
well as the related changes in the western Pacific subtropical high
(WPSH) (19, 20). Here, we present two sets of proxy datasets.
One proxy is the phytolith record, a reliable indicator for the
evaluation of seasonal–annual Poaceae in ecosystems (21, 22);
and Poaceae taxa are more sensitive than arboreal taxa in re-
vealing seasonal hydrological changes (21, 22). The other proxy
is the pollen record, which is an indicator of annual precipitation
and reflects the general paleoclimate features at low latitudes in
East Asia (23–29). Therefore, based on the two contrasting
proxies, the successive 60,000-y phytolith and pollen sequences in
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this study could substantially reveal the mechanism of regional
seasonal precipitation changes during stadials/interstadials since
the last glacial period in northern tropical East Asia.

Results
Paleovegetation Dynamics in the Last 60 ka. A total of 113 families
and genera of pollen and 23 phytolith morphotypes (28, 31) were
identified from a 24.20-m-depth core in HML covering the past
60 ka based on 22 AMS (accelerator mass spectrometry) 14C
dates (SI Appendix, Figs. S1 and S2 and Table S1). In total, 233
samples at a 10-cm interval clearly revealed three stages (S1, S2,
S3) of paleovegetation evolution: the vegetation changed from
southern subtropical evergreen and deciduous broad-leaved mixed
forest during 60–40 ka BP (ka BP = 1,000 calibrated years Before
Present), which was featured by high contents of both tropical–
subtropical arboreal taxa and deciduous arboreal taxa (S1), to
deciduous broad-leaved forest dominated by ∼20% of Quercus
(Deciduous) mixed with herb taxa dominated by ∼45% of Poaceae
and ∼10% of Artemisia during 40–12 ka BP (S2). Since 12 ka BP,
the vegetation has changed to tropical seasonal rainforest, which
resembled modern vegetation types, characterized by the high
contents of arboreal Palmae and Moraceae as well as herbaceous

Poaceae taxa, e.g., Bambusoideae and Eragrostoideae (S3) (Fig. 2
and SI Appendix, Figs. S3–S5).
The most striking features of the HML phytolith record are

seven sharp increases in bilobates (including former dumbbell
and cross-types), which are defined as events when the percentage
of bilobates sharply increases to more than ∼15%. We named these
events as B1 (bilobate event 1) (16.4%, peak value of bilobate
percentage, the same below), B2 (33.9%), B3 (12.5%), B4 (30.0%),
B5 (19.1%), B6 (19.2%), and B7 (20.4%) (Fig. 2). Furthermore, the
seven bilobate events occurred at 10.1–10.8, 14.3–14.9, 26.2–26.4,
32.1–32.9, 44.0–46.7, 48.4–48.9, and 59.2–60.0 ka BP, corresponding
to the time of the largest SST gradient during the interstadials (SI
Appendix, Table S2, Fig. S6). To clarify the paleoclimatic signifi-
cance represented by the prosperity of bilobates, it is necessary to
analyze its modern process in detail.

Climatic Significance of Bilobates in the Topsoil of China. We ana-
lyzed 240 topsoil samples collected from eight major vegetation
regions across China, from forest to steppe to desert, along a
precipitation gradient (32). Fig. 3 reveals that the topsoil bilobate
content presents a rise–fall pattern with increasing mean annual
precipitation (MAP). The content of bilobate first increases rap-
idly with increasing MAP and then decreases sharply when the
MAP reaches 1,250 mm. The highest content of bilobates occurs
at MAPs between 500 and 1,250 mm; in particular almost all
topsoil samples with bilobate contents higher than 10% fall in the
regions where the MAP is less than 1,250 mm (Fig. 3).

Discussion and Conclusions
Phytolith and Pollen Records Reveal Seven Drought Events during the
Last 60 ka. Our pollen record together with other pollen records
in tropical and subtropical evergreen forest zones (33, 34) (SI
Appendix, Fig. S7) revealed hydrological changes and thus Asian
monsoon changes that followed the Northern Hemisphere high-
latitude (65°N) summer (integrated over June, July, and August)
insolation at the glacial–interglacial scale (Fig. 4), whereas our
phytolith record, sensitive proxy of seasonal climate changes,
revealed seven seasonal drought events under interstadial/stadial
oscillations during the relatively arid glacial conditions of the last
60 ka in northern tropical East Asia.
Bilobates are a typical type of phytolith derived mainly from

Panicoideae of C4 grasses (35). Topsoil samples with bilobate
contents over 15% only occur in the regions where the MAP
ranges between 750 and 1,250 mm (Fig. 3), which is consistent
with the result of a previous study that the annual precipitation
in the area dominated by C4 plants was limited in a range of
500–1,200 mm (36). Although temperature controls the growth
of C4 plants, they will dominate the landscape only when pre-
cipitation declines as temperature increases, even in regions
where the temperature is high enough for the growth of C4 plants
in tropical regions (36). Furthermore, as spring and summer are
the growing seasons for C3 and C4 plants (37), the decrease in
spring rainfall and the subsequent drier conditions in summer
would suppress C3 plants and contribute to the expansion of C4

plants in tropical regions. Therefore, the sharp increases in
bilobates beyond 15% at the HML, where the MAP is over
1,600 mm at present (28), represent the reduction in seasonal
rainfall, suggesting that the increase in the bilobate proportion is
mainly due to the expansion of Panicoideae. Both of phytolith
accumulation rate and abundance for the bilobate show signifi-
cant increases during seven drought events, indicating that this
expansion is largely contributed by favorable climate conditions
and the decline of lake level resulting in more living space of
Panicoideae (SI Appendix, Fig. S8).
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Fig. 1. Geographical and climatological settings of study site and region.
(A) Topographic map from ENVI 5.1 showing the location of study site (red
star, Huguangyan Maar Lake, HML) in south China and seasonal positions of
ITCZ (30). (B) Schematic map showing the settings of atmospheric circulations
and SSTs in the tropical Pacific. Black solid circles indicate cores mentioned in
this paper: 1 = MD98-2181, 2 = ODP806B, 3 = MD02-2529, 4 = ME0005A-
24JC, 5 = ODP846, 6 = TR163-22, and 7 = TR163-19. Colors are annual mean
SSTs from the period 1981–2010 obtained from https://psl.noaa.gov.
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Zonal SST Gradients Control the Hydrological Variability According to
Walker and Hadley Circulation Changes. The seven events prefer-
entially occurred during periods with large zonal SST gradients
(ΔSST) reconstructed from the western (12, 38) to eastern
(38–42) tropical Pacific (SI Appendix, Fig. S6), and corresponded
to Dansgaard–Oeschger events (D/O events) 1, 3, 5, 12, 13, and 17
at high latitudes as compared with the NGRIP (North Greenland
Ice Core Project) δ 18O record over the last 60 ka (43, 44) (Fig. 4,
SI Appendix, Table S2). The evidence indicates that the hydro-
logical fluctuations in the study region are principally influenced
by the tropical Pacific ΔSST. We propose that the prolonged ef-
fect of ΔSST fluctuations on precipitation is achieved through the
westward-shifted WPSH via Walker and Hadley circulation
changes over the western Pacific during the interstadials of the last
glaciation.
Warm SSTs in the western tropical Pacific reduce convections

in the eastern Pacific, resulting in an anticyclonic gyre in the
North Pacific, which is favorable to the westward extension of
the WPSH (19). Meanwhile, increased western tropical Pacific
SST enhances the East Asia Hadley circulation (EAHC) (51,
52), and the increased EAHC would subsequently enhance its
descending branches located around 30°N and further reinforce
the WPSH (53). The flows returning to low latitudes in the lower
troposphere (northeastern wind) would further suppress the East
Asian summer monsoon and delay northward migration of the
WPSH, thus finally decreasing the water vapor from the ocean
and rainfall (18) (Fig. 4F). Modern climatological record shows
that the spring and summer precipitation in HML in the years
when the WPSH moved westward was significantly lower than
that in the years when the WPSH moved eastward (Fig. 4G),
supporting our hypothesis.
Although the AMOC-forced ITCZ movement is the prevailing

explanation for the tropical hydrological records (9, 54), a single
ITCZ mechanism is difficult to reconcile with the dry interstadial
conditions inferred from our HML records. Based on the ITCZ
mechanism, drier conditions in tropical East Asia should occur at
stadials when the ITCZ moves southward (55). We speculate
that the contradiction is because the shift of the mean ITCZ
position is small, which has been proven by model and obser-
vation research (56).
Combined with other evidence (25, 27, 57), our pollen and

phytolith records indicated that the vegetation was dominated by
subtropical evergreen forests with deciduous arboreal taxa during
cold glacial periods and that the vegetation was eventually trans-
formed into tropical monsoon rainforests until the Holocene. The
crown-closed rainforest under the warm and humid climate would
possibly suppress the growth of C4 plants, whereas the dry glacial

period and open environment would make the growth of C4 plants
more sensitive to hydrological changes. Therefore, the phytolith
content during the Holocene did not follow the ΔSST variation.
The increased sea level (Fig. 4B) and the consequent shrunken
continent, which drove the northward migration of the Asian
monsoon rain belt (58) during deglaciation, might make a great
contribution to the transformation of vegetation.
We provide well-dated successive terrestrial phytolith and

pollen records, revealing that seasonal hydrological changes in
tropical East Asia were greatly controlled by the SST gradient
over the western to eastern tropical Pacific during the last gla-
ciation. The region experienced at least seven dry events, which
promoted the growth of Panicoideae during relatively warm in-
terstadial periods. An explanation of this phenomenon is focused
on the variations in the WPSH west-edge position via changes in
the WC and EAHC linked with the zonal SST gradient over the
tropical Pacific. Based on substantial evidence, it is suggested
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that both zonal and meridional ocean–atmosphere circulations,
rather than solely the ITCZ (54) or ENSO (12), play funda-
mental roles in influencing tropical East Asia hydrology and
further shed light on the mechanism of local vegetation re-
sponses under global changes at different timescales.

Materials and Methods
The 24.28-m length of HML core B is retrieved from a water depth of 13 m
using an Usinger piston corer. The sediments are macroscopically homoge-
neous, greenish black, highly organic gyttja with occasional indistinct layers
(24, 59) (SI Appendix, Fig. S1).

A total of 23 phytolith morphotypes were identified from 233 samples of
HML core B, which includes a previously published 10,000-y-long phytolith
sequence (10–20 ka) (60), according to the classification system of Lu et al.
(32), which was modified from three other classifications (61–63) (SI Ap-
pendix, Fig. S4). Phytolith abundance was expressed as the percentages of all
phytoliths counted (SI Appendix, Fig. S5). For the identification of bilobates,
the article published by Lu et al. (35) was used as a reference. The bilobate
types from our core samples could be identified as Panicoideae according to
the morphological characteristics of lobes and shanks (35). Parts of the
pollen sequence of core B, dating from 13 to 40 ka, 8–18.5 m, have already
been published (28). In this study, we provide the whole pollen sequence,
which includes a total of 113 families and genera of pollen taxa. Pollen
identification was aided with two references (64, 65). Pollen percentages

were calculated using the sum of pollen and spores. C2 (Version 1.7.7)
software was applied to the phytolith and pollen percentage data to extract
the changes in vegetation (66).

Constructions of the relation between modern climate and phytolith
morphtypes are based on the data of 240 soil samples from 8 major vege-
tation regions across China and modern climatic data from a database
consisting of 722 meteorological stations (32).

The chronology of HML core B was reconstructed by linear interpolation of
22 AMS radiocarbon age control points (SI Appendix, Fig. S2 and Table S1),
which have already been published (24, 60), including 16 ages of plant remains
and 6 ages of bulk samples. All 14C ages were converted to calendar ages using
the IntCal 13 curve (67). The sediment section of HML extends back to 60 ka BP
and is characterized by sedimentation rates ranging from ∼40 cm ka−1 prior to
the Holocene to ∼0.110 cm ka−1 during the past 10,000 y.

Data Availability. All study data are included in the article and SI Appendix.
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